\qquad

FILL IN THE BLANKS and SHORT ANSWER:

1. The theory that explains the behavior of gases at the molecular level is called the \qquad
\qquad which is based on assumptions about a theoretical gas often referred to as an \qquad .
2. Use the kinetic theory to explain why a helium filled balloon expands when it is brought inside to a warm room from the cold outdoors.
3. Define "IDEAL GAS"
4. Gases deviate most from ideal behavior under conditions of very
\qquad temperature and very \qquad pressure.
5. Pressure is defined as \qquad per unit \qquad . The earth's atmosphere has weight, which creates \qquad
\qquad .
6. Standard temperature has been established as \qquad ${ }^{\circ} \mathrm{C}$ or \qquad K. Standard pressure has been established as \qquad atm, \qquad torr, \qquad mm Hg , or \qquad kPa . The abbreviation for standard temperature and pressure is \qquad .
7. A \qquad is used to measure atmospheric pressure, while a
\qquad is used to measure gas pressure.
8. When atmospheric pressure increases, how does the height of the column of mercury change?
9. If pressure is constant, the volume of a sample of gas (increases, decreases) as temperature increases.
10. At constant pressure, the volume of a sample of gas is \qquad proportional to temperature as measured on the \qquad temperature scale.
11. According to \qquad law, pressure and volume are proportional provided all other factors remain constant. Mathematically, this means that their \qquad is a constant.
12. The \qquad Gas Law permits calculation of any one term when temperature, pressure, and volume change for a gas.
13. If A and B are directly proportional and the value of A becomes $1 / 3$ as much, what happens to the value of B ?
14. State Avogadro's law:
15. At STP, 22.4 L of N_{2} contain how many molecules?
16. Tire manufacturers recommend checking air pressure when tires are cold, before driving. WHY?
17. Ammonia $\left(\mathrm{NH}_{3}\right)$ and sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ are both gases with readily distinguishable odors. If a cylinder of each were opened at the same time in a draftless room, which odor would you expect to smell first? EXPLAIN.
18. \qquad Law of Partial \qquad states that in a mixture of gases the total pressure of the mixture is equal to the
\qquad of the pressures that each gas would exert by itself in the same volume.
19. Suppose you have 1 L of oxygen gas at a pressure of $1 \mathrm{~atm}, 1 \mathrm{~L}$ of nitrogen gas at a pressure of 2 atm , and 1 L of hydrogen gas at a pressure of 3 atm . All 3 samples are at room temperature. If you transfer the oxygen and nitrogen to the container occupied by the hydrogen, the pressure exerted by the oxygen in the final mixture will be \qquad . The pressure exerted by the mixture will be \qquad .
20.At STP, \qquad liters is the volume one mole of a gas occupies; this quantity is consequently called the \qquad volume of a gas.

PROBLEMS: SHOW SET-UP AND CIRCLE FINAL ANSWER.

1. What volume does 2.50 moles of carbon monoxide occupy at 50.5 kPa pressure and $20.0^{\circ} \mathrm{C}$?
2. At 800 mm Hg , a gas has a volume of 380 L . What is its volume at standard pressure?
3. A quantity of gas has a volume of 121 L when confined under a pressure of 2.50 atm at a temperature of $20.0{ }^{\circ} \mathrm{C}$. At what pressure will its volume be 30.0 L at $25.0^{\circ} \mathrm{C}$?
4. At constant pressure, the volume of a gas is increased from 150.0 L to 300.0 L by heating it. If the original temperature of the gas was $20.0^{\circ} \mathrm{C}$, what will its final temperature (in Kelvins) be?
5. A quantity of gas is collected over water at $15{ }^{\circ} \mathrm{C}$. The manometer indicated a pressure of 24.0 kPa . What would be the pressure of the dry gas?
6. How many liters of pure oxygen at STP is consumed by a human being in 24 hours if the human body requires daily energy that comes from metabolizing 816 grams of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$?

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(s)+12 \mathrm{O}_{2}(g) \longrightarrow 12 \mathrm{CO}_{2}(g)+11 \mathrm{H}_{2} \mathrm{O}(/)
$$

