Name these Acids:

Write formulas for these acids:
hydrofluoric acid: \qquad phosphorous acid: \qquad

Name these bases and salts:
$\mathrm{KOH} \longrightarrow$ MgSO_{4}

Calculate:

1. the pH of a $1.4 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$ solution
2. the $\left[\mathrm{H}^{+}\right]$of a solution with $\mathrm{pH}=3.2$
3. the $\left[\mathrm{OH}^{-}\right]$of a solution with a $\left[\mathrm{H}^{+}\right]$of $9.3 \times 10^{-4} \mathrm{M}$
4. In a titration, 25.0 mL of a 0.20 M NaOH solution is used to neutralize 10.0 mL of HCl .
a. Write the equation for this neutralization reaction:
b. Calculate the molarity of the acid:
5. In a titration, 24.2 mL of $0.120 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ were required to neutralize 33.1 mL of $\mathrm{H}_{3} \mathrm{PO}_{4}$.
a. Write the equation for this neutralization reaction:
b. What is the molarity of the acid?
6. What is the word equation for the neutralization of a strong acid and strong base?
7. In a neutral solution, moles of \qquad equal the moles of
\qquad _.
8. ApH of 7 indicates that a solution is \qquad ; a ph <7 would mean the solution is \qquad ; and $\mathrm{apH}>7$ is $\mathrm{a}(\mathrm{n})$
solution.
9. Contrast a strong acid with a weak acid:

Define:

1. titration-
2. electrolyte-
3. end point-
4. salt-
5. Arrhenius definition of an acid and a base-
6. operational definition-

Fill in the blanks:

1. Acids have a \qquad taste, react with metals to produce gas, turn \qquad different colors according to pH , and are \qquad because their water solutions conduct
electricity. On the other hand, bases have a \qquad taste, feel
\qquad turn \qquad different colors according to pH , and are \qquad because their water solutions conduct electricity.
2. Most cleaning products are (acidic, basic) while most foods are (acidic, basic).
3. Bases turn litmus \qquad phenolphthalein \qquad and cabbage juice \qquad . Acids turn litmus \qquad phenolphthalein \qquad and cabbage juice \qquad .
