\qquad
Fill in the blanks using the most appropriate word or phrase.

1. A solution is a \qquad mixture of two or more substances.
2. Every solution is composed of a \qquad which is normally present in the smaller amount and is the substance that is \qquad , and a
\qquad which is normally present in the greater amount and is the substance that does the dissolving.
3. A carbonated drink is an example of a \qquad solute dissolved in a
\qquad solvent; the final phase is that of a \qquad . Air is an example of a \qquad solution.
4. Liquids, such as antifreeze and water, which dissolve in one another are said to be \qquad , while liquids that do not dissolve in one another, such as salad oil and vinegar, are said to be \qquad .
5. Brass, a mixture of copper and zinc, is an example of a solid solution known as $a(n)$ \qquad .
6. Because the particles in a solution are so small (molecules, \qquad ,
or \qquad), filtration cannot be used to separate the components nor do the components settle upon standing.
7. \qquad contain particles too large to be true solutions, and upon standing, separate. They are actually \qquad mixtures and (can, can not) be separated by filtration. They also exhibit the \qquad
\qquad which is the scattering of a beam of light.
but do not separate upon standing.
8. The rate of solution expresses how \qquad a solute dissolves in a solvent.
9. Henry's Law: The \qquad of a gas dissolved in a given volume of liquid is
\qquad to the pressure of the gas.
10. For most solutes to be dissolved in liquid solvents:
-- as temperature increases the rate of solution \qquad
-- as surface area increases, the rate of solution \qquad
-- stirring or agitating the mixture \qquad the rate of solution.
11. \qquad are substances that conduct an electric current when dissolved. \qquad are substances that do not conduct an electric current when dissolved.
12. A solution is \qquad if it contains a relatively large amount of solute compared to the amount of solvent. A solution is \qquad if it contains a relatively small amount of solute.
13. \qquad is a measure of how much solute can dissolve in a given amount of solvent at a given temperature.
14. \qquad properties depend only on the concentration of the solution. These properties include vapor pressure \qquad freezing point \qquad and boiling point \qquad .

Define each of the following words.

1. aqueous:
2. tincture:
3. emulsion:
4. colligative properties:
5. "like dissolves like":

Answer each of the following questions completely.

1. Explain how a solution can be both dilute and saturated.
2. Why do we put antifreeze in car radiators in the summer as well as in the winter?
3. What will happen when a crystal of solute is added to an unsaturated solution?
4. What will happen when a crystal of solute is added to a supersaturated solution?
5. Normally, if the temperature is increased, the solubility of a solid solute
\qquad . (For gaseous solutes, however, increasing the
temperature \qquad solubility.)

Use the following data to construct a

 solubility curve for $\mathrm{NH}_{4} \mathrm{Cl}$.Solubility of Ammonium Chloride

Grams of $\mathrm{NH}_{4} \mathrm{Cl}$ per 100 g of $\mathrm{H}_{2} \mathrm{O}$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$
30	0
35	15
40	25
50	50
60	70
71	90
74	95

Use your graph to answer the following questions.

1. What is the solubility of ammonium chloride at $40^{\circ} \mathrm{C}$? \qquad
2. If 54 g of $\mathrm{NH}_{4} \mathrm{Cl}$ are dissolved at $68^{\circ} \mathrm{C}$, the solution is \qquad .
3. If 54 g of $\mathrm{NH}_{4} \mathrm{Cl}$ are dissolved at $30^{\circ} \mathrm{C}$, how many grams don' \dagger dissolve?

Answer each of the following questions about molarity. Show all work on the problems.

1. Describe, IN DETAIL, how to make one liter of a 1 M NaCl solution.
2. What is the molarity of a solution that contains 15.0 g NaCl in 1.25 L of solution?
3. A solution of HCl is 0.200 M . What mass of acid is dissolved in 250 mL of solution?
4. A solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ contains 65.0 g of solute dissolved in water to make a 3.00 M solution. What is the volume of the solution, in liters?
