"White Dwarfs & Planetary Nebulae: Crash Course Astronomy #30" 1. The eventual fate of the sun is as a ______ 2. When helium fusion stops, the sun will have about ______ the mass it has today. 3. A white dwarf is roughly the size of ______. 4. The force of gravity at the surface of a white dwarf is _____ that of Earth. 5. A white dwarf surrounded by glowing remnants of gas is referred to as a 6. The vast majority of planetary nebulae are spherical in shape. TRUE **FALSE** 7. Planetary nebulae may owe their existence to _______. 8. Oxygen glows **LESS** MORE brightly than hydrogen. 9. One day, the sun will be at the center of a planetary nebulae. TRUE **FALSE** 10. Stars that are ______ times the sun's mass explode spectacularly. "Neutron Stars: Crash Course Astronomy #32" 1. When an 8-20 solar mass star ends its life, it does so in the form of a 2. Quantum mechanics says that electrons do everything they can to not be squeezed together. If the core has a mass of more than about ______ times the mass of the sun, they fail to do this. 3. Under this immense pressure, protons and electrons get smashed together and form ______. 4. A neutron star has ______ of the mass of the sun, but is only about _____ across. 5. A single cm³ of neutronium (the stuff neutron stars are made of) has a mass of ________ 6. A typical neutron star has a surface gravity ______ times that of the Earth's. 7. A pulsar is a that is emitting beams of energy out into the universe. The spin of a neutron star is so stable that the pulse act like a very accurate 8. Neutron stars with ridiculously strong magnetic fields are called ______.

9. A magnetar can give off as much energy as the sun does in years.

10. Neutron stars are not the weirdest things in the sky...that is a _______

"Black Holes: Crash Course Astronomy #33"

1. A star whose core is less than 1.4 times the mass of	of the sun beco	omes a		<u>.</u>
when it dies. Stars whose core is between 1.4 and 2.				
	If the co	re's mass is grea	ter than 2.8 time	es the mass of
the sun, there is absolutely	<u> </u>	that can s	stop it from cont	inuing to
collapse.				
2	is the ve	elocity at which y	ou need to fling	something
off the surface of an object to get it to escape. The si	un's is			·
3. In our universe, nothing can travel faster than				_,
4. The point at which the escape velocity equals the	speed of light i	s called the		
5. The sun will become a black hole. TRUE	E FAI	LSE		
6. Black holes suck in whatever goes by.	TRUE	FALSE		
7. Orbiting a 10 solar mass black hole is just like orbit	ting a 10 solar ı	mass star.	TRUE	FALSE
8. It's believed that every major		has a blac	ck hole at its cen	ter.
9. If you fell into a black hole feet first, the tidal force	e created by a b	olack hole would	stretch you out	in a noodle in
a process called			•	
10. Einstein viewed space as a thing like a		Wh	at we perceive a	s gravity is
iust a o			·	
11. The stronger the gravity of an object, the	FASTER	SLOWER	time passes	. The gravity
of a black hole is so strong that at the event horizon t	ime essentially	·	· ·	
12. There are some theories that hint that the event	harizan daesn'	't exist TRU		SF