Hess's Law Worksheet

1. Calculate ΔH for the reaction: $C_2H_4(g) + H_2(g) --> C_2H_6(g)$, from the following Data.

$$C_2H_4(g) + 3 O_2(g) \longrightarrow 2 CO_2(g) + 2 H_2O(1)$$

 $\Delta H = -1411. \, kJ$

$$C_2H_6(q) + 3\frac{1}{2}O_2(q) --> 2CO_2(q) + 3H_2O(1)$$

 $\Delta H = -1560. \, kJ$

$$H_2(g) + \frac{1}{2} O_2(g) --> H_2O(l)$$

 $\Delta H = -285.8 \text{ kJ}$

2. Calculate ΔH for the reaction 4 NH₃ (g) + 5 O₂ (g) --> 4 NO (g) + 6 H₂O (g), from the following Data.

$$N_2(g) + O_2(g) --> 2 NO(g)$$

 $\Delta H = -180.5 \text{ kJ}$

$$N_2(g) + 3 H_2(g) --> 2 NH_3(g)$$

 $\Delta H = -91.8 \text{ kJ}$

 $\Delta H = -483.6 \text{ kJ}$

3. Find

 ΔH° for the reaction $2H_{2}(g) + 2C(s) + O_{2}(g) --> C_{2}H_{5}OH(I)$, using the following thermochemical data.

$$C_2H_5OH(I) + 2 O_2(g) --> 2 CO_2(g) + 2 H_2O(I)$$

 $\Delta H = -875. \, kJ$

$$C(s) + O_2(g) --> CO_2(g)$$

 $\Delta H = -394.51 \text{ kJ}$

$$H_2(g) + \frac{1}{2}O_2(g) --> H_2O(I)$$

 $\Delta H = -285.8 \text{ kJ}$

4. Calculate

 ΔH for the reaction $CH_4(g) + NH_3(g) --> HCN(g) + 3 H_2(g)$, given:

$$N_2(g) + 3 H_2(g) --> 2 NH_3(g)$$

 $\Delta H = -91.8 \text{ kJ}$

$$C(s) + 2 H_2(g) --> CH_4(g)$$

 $\Delta H = -74.9 \text{ kJ}$

$$H_2(g) + 2C(s) + N_2(g) --> 2HCN(g)$$

 $\Delta H = +270.3 \text{ kJ}$

5. Calculate ΔH for the reaction 2 Al (s) + 3 Cl₂(g) --> 2 AlCl₃ (s) from the Data.

 $\Delta H = -1049. \, kJ$

 $\Delta H = -74.8 \text{ kJ}$

 $\Delta H = -1845. \, kJ$

 $\Delta H = -323. \, kJ$

Use these charts as needed in the following calculations: You will need your own paper to complete your calculations.

Substance	Specific Heat (J/g°C)
H₂O (I)	4.184
H20 (stee	am) 2.02
Al (s)	0.89
Fe(s)	0.45
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

<u>Water</u> ∆H _{fus =} 334 J/g	
ΔH _{vap} = 2260 J/g	

- 8. How much heat is required to warm 275 g of water from 76 °C to 87 °C?
- 9. PCl_3 is a compound used to manufacture pesticides. A reaction requires that 96.7 g of PCl_3 be raised from 31.7 °C to 69.2 °C. How much energy will this require given that the specific heat of PCl_3 is 0.874 J/g °C?
- 10. A quantity of water is heated from $25.0\,^{\circ}C$ to $36.4\,^{\circ}C$ by absorbing $325\,^{\circ}J$ of heat energy. What is the mass of the water?
- 11. A 500. g sample of an unknown metal releases 6.4 \times 10² J as it cools from 55.0 °C to 25.0 °C. What is the specific heat of the sample?
- 12. In a household radiator, 1000 g of steam at 100. °C condenses (changes from gas to liquid). How much heat is released?
- 13. How much heat is necessary to change a 52.0 g sample of water at 33.0°C into steam at 110.0°C? This problem requires several steps since temperature changes and a phase change takes place. Use the hints to solve.
 - 1) Solve for the heat required to increase the water temperature from 33.0 $^{\circ}C$ to 100.0 $^{\circ}C$. Stop here because the water will change phase at this temperature.
 - 2) Solve for the heat required to change the water into steam (no change in temp).
 - 3) Calculate the heat required to change the temperature of the steam from $100.0\,^{\circ}\text{C}$ to $110.0\,^{\circ}\text{C}$.
 - 4) To get the heat required for the whole process, _____ the calculated heats from above.