Linuties & Equilibrium Retust Acuiu

- (1) what 2 things must be satisfied before reactants will react and total products according to the collision theory?
- (2) what is activation unugy?
- (3) List 5 factors that can affect a reaction rate and axplain what and how they can speed up a reaction?
- (4) Draw and Jakul this i potential uningy diagrams, include aHr, aHp, aHan, and Ea.

- (5) write equilibrium expressions for the following reactions:
 (A) $2 \cdot 0 \cdot (9) + 0 \cdot 2 \cdot (9) = 2 \cdot 0 \cdot (9)$
- (6) 2KU(3(5) = 2KU(5) + 302(9)
- ල Nz(g) + 3Hz(g) = ZNHz(g)
- (g) 4NH319) + 302197 = 2Nz(9) + 6 HzO(9)

- (b) calculate key for the aguilibrium reactions below:
- (A) 200(g) + 02(g) = 2002(g) when LeO] = .4564, EOz] = .2314, and LeOz] = .6104
- (6) N2(9) + 3H2(9) = ZNH3(9)
 when EN23=1.20M, EH23=1.20M, ENH3J=2.10M.
- (C) 4NH3(9) + 302(9) = 2NZ(9) + 6HZ(0(9)
 when ENH3]= 1.00M, EOZ]= 2.00M, ENZ]= 3.00M, E [H20] = 2.00M
- (7) which way will aquilibrium shift in the following situations: Left, Right, or No Shift 9 is negative
- (A) ZNO(g) + Hz(g) = NzO(g) + HzO(g)
- (i) NO is added
- (iii) Hz is removed (iii) NzO is added
 - (iv) the temperature is decease of (v) the volume deceased (vi) a catalyst is added.
- (B) (Oz(g) + Hz(g) = (O(g) + HzO(g) q is positive
- (iii) CUz is added (i) co is added
- (iii) Hz is removed
- (vi) a catalyst is removed. (v) the volume incuased (iv) the temperature is incuased

7
-
2.
_
7
nit Test Review
-
6
<
ē.
5
SO
0
=
Ξ.
0
=
٠.
=
ā
~
-
2.
Ö
: Solutions and Acids/l
œ
22
C

	:-	
a.	Define	
a. Solute	Define the following terms:	

Name:

Period: 2

- b. Solvent
- . Saturated

Unsaturated

- . Super saturated
- Concentrated
- g. Dilute
- Colligative property
- Freezing point depression
- Boiling point elevation
- 2. What are 3 factors that can speed up how fast a solute dissolves in a solvent and why?

In order to make a saturated solution of potassium chlorate at 70° C, how much potassium chlorate should be dissolved in $100~{\rm g}$ of water?

Ç.

- b. How many grams of NaCl should be dissolved in 500g of water in order to make a saturated solution at 90°C ?
- c. Which is more concentrated: a saturated solutions of sodium nitrate at 20°C or a super saturated solution of calcium chloride holding 83g of calcium chloride dissolved in 100g of water at 20°C?
- 4. Can a solution be dilute and saturated at the same time? Explain.

,ō	6. Use the equation for molality to solve these problems: $\mathbf{m} = \mathbf{n}/\mathbf{k}\mathbf{o}$	c. What is the mass of MgSO ₄ used to create 101mL of a 1.11M solution?	b. How many moles of CrCl; were dissolved to make 0.75L of a 0.75M solution?	a. What is the molarity of a solution made by dissolving 130.0g of $Cu(NO_2)_2$ in enough water to make a 2.32L solution?	3. Use the equation for molarity to solve these problems: $\mathbf{M} = \mathbf{n/V}$
ikg of water?	2.		on?	in enough	Acids/

Bases

- Define the following terms.
- a. Arrhenius acid
- b. Arrhenius base
- Bronsted-Lowry acid
- d. Brønsted-Lowry base
- c. Conjugate acid
- g. Amphoteric

f. Conjugate base

h. pH

- Identify the Bronsted-Lowry acid, Bronsted-Lowry base, conjugate acid, and conjugate base in the reactions below:
- a. $HSO_4^{1-} + NH_3 \Rightarrow SO_4^{2-} + NH_4^{1+}$
- b. H₂O + NO₃1- > OH- + HNO₃
- $H_2O + HCO_3^{1-} \rightarrow H_3O^{1+} + CO_3^{2-}$

d. F' + H_2SO_4 \Rightarrow HF + HSO_4

c. What mass of CO2 was dissolved in 1220g of water to make a 1.25m solution?

3. Label the beaker in the picture that represents a strong acid. Label the beaker that represents a weak acid.

- a. What makes an acid or base strong?
- What makes an acid or base weak?
- List 7 strong acids.
- List 8 strong bases
- 4. List 4 properties of an acid. List 4 properties of a base.

5. Use the pH equations below to answer these questions.

$$pH = -\log[H^+]$$

 $[H^+] = 10^{-pH}$

$$pOH = -log[OH']$$
 $pH + pOH = 14.00$

$$pH + pOH = 14$$

$$[OH^-] = 10^{-90H}$$
 $[H^+] \times [OH^-] = 1.00 \times 10^{-14} M^2$

- a. Find the pOH of a solution of HNO₃ with a pH of 5.45.

b. Calculate the pH of a solution of HCl with a concentration of 6.56×10^{-7} M.

- c. Determine the pOH of a solution of HNO₃ with a [OH-] of 7.67×10^{-11} M.
- d. Find the pH of a solution of RbOH with a concentration of 8.78×10^{-6} M.
- e. Calculate the [H'] of an HClO₃ solution with a pH of 2.32.
- f. Calculate the [OH] of a solution of HI with a [H'] of 9.89×10^{-4} M.
- g. Calculate the [H⁺] of a solution of KOH with a pOH of 3.43.